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Introduction and overview Setup Main Results

In the last few decades, a lot of progress has been made in the study
of potential theoretic properties for various types of jump processes in
open subsets D of Rd . These include killed symmetric Lévy
processes, and their censored and reflected versions.

An important example of a killed symmetric Lévy process is the killed
symmetric α-stable process X D in D ⊂ Rd . X D can also be
constructed from Brownian motion as follows. Suppose B is a
Brownian motion in Rd , S is an independent α/2 -stable subordinator.
Then the process Xt := BSt is a symmetric α-stable process. Kill this
process when it exits D, we get a killed symmetric α-stable process
X D. Here we do subordination first and then killing. X D is a killed
subordinate Brownian motion. If we replace the Brownian motion by a
general symmetric Lévy process and S by a general subordinator, we
get a killed subordinate Lévy process.
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In these studies, the jump kernel JD(x , y) of the process in the open
set D is either the restriction of the jump kernel of the original process
in Rd or comparable to such a kernel, and it does not tend to zero as
x or y tends to the boundary of D. For example, the jump kernels of
the killed stable process, and censored stable processes in D are
both c|x − y |−d−α.

In this sense, the corresponding integro-differential operator is
uniformly elliptic.
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Suppose X is a symmetric Lévy process in Rd , D is an open subset
of Rd , and St is an independent subordinator. The process Yt := X D

St

is called a subordinate killed Lévy process. Here we perform killing
first and then subordination. These two operations are not
communtative, a subordinate killed Lévy process is different from a
killed subordinate Lévy process.

In case X is a Brownian motion, St is an α/2-stable subordinator, Y is
a subordinate killed BM and its generator is −(−∆|D)α/2, called the
spectral fractional Laplacian in the PDE community. In case X is a
symmetric β-stable process, St is an independent γ/2-subordinator,
Y is a subordinate killed β-stable process and its generator is
−((−∆)β/2|D)γ/2.
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Suppose X is a symmetric Lévy process in Rd , D is an open subset
of Rd , and St is an independent subordinator. The process Yt := X D

St
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Subordinate killed Lévy processes form another important class of
Markov processes. Unlike killed Lévy processes and censored
processes, the jump kernel of a subordinate killed Lévy process in an
open subset D ⊂ Rd tends to zero near the boundary of D. In this
sense, the Dirichlet forms of subordinate killed Lévy processes are
degenerate near the boundary.

In two earlier papers, Kim-S.-Vondraček (TAMS, 2019) and
Kim-S.-Vondraček (Pot. Anal., 2019), we studied the potential theory
of those processes. There were some unexpected results.

(i) The boundary Harnack principle holds in certain cases and fails in
other cases. (For −((−∆)β/2|D)γ/2 with β ∈ (0,2), BHP holds when
γ > 1, fails when γ ∈ (0,1].)

(ii) There is a phase transition in the estimates of the jump kernel.
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Subordinate killed Lévy processes are natural and important, but their
structures are too rigid for applications. In some sense we are just
dealing with particular processes. Is there is a general theory behind
all these?

Using the results of Kim-S.-Vondracek (TAMS, 2019) and
Kim-S.-Vondraček (Pot. Anal., 2019) as guidelines, in ([KSV1], we
built a general framework to study the potential theory of Markov
processes with jump kernels decaying at the boundary.
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Let Rd
+ = {x = (x̃ , xd ) : xd > 0}, j(|x − y |) = |x − y |−α−d , 0 < α < 2.

Let B(x , y) be a function on Rd
+ × Rd

+ satisfying the following
assumptions:

(A1) B(x , y) = B(y , x) for all x , y ∈ Rd
+.

(A2) If α ≥ 1, then there exist θ > α− 1 and C1 > 0 such that

|B(x , x)− B(x , y)| ≤ C1

(
|x − y |
xd ∧ yd

)θ

.
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(A3) There exist C2 ≥ 1 and parameters β1, β2, β3 ≥ 0, with β1 > 0 if
β3 > 0, and β2 > 0 if β4 > 0, such that

C−1
2 Bβ1,β2,β3,β4(x , y) ≤ B(x , y) ≤ C2Bβ1,β2,β3,β4(x , y) , x , y ∈ Rd

+ ,

where Bβ1,β2,β3,β4(x , y) is defined to be

(xd ∧ yd

|x − y |
∧ 1

)β1
(xd ∨ yd

|x − y |
∧ 1

)β2
[
log

(
1 +

(xd ∨ yd ) ∧ |x − y |
xd ∧ yd ∧ |x − y |

)]β3

×

×
[
log

(
1 +

|x − y |
(xd ∨ yd ) ∧ |x − y |

)]β4

.

(A4) For all x , y ∈ Rd
+ and a > 0, B(ax ,ay) = B(x , y). In case d ≥ 2,

for all x , y ∈ Rd
+ and z̃ ∈ Rd−1, B(x + (z̃,0), y + (z̃,0)) = B(x , y).

Define

J(x , y) = |x − y |−d−αB(x , y), x , y ∈ Rd
+ × Rd

+.



Introduction and overview Setup Main Results

(A3) There exist C2 ≥ 1 and parameters β1, β2, β3 ≥ 0, with β1 > 0 if
β3 > 0, and β2 > 0 if β4 > 0, such that

C−1
2 Bβ1,β2,β3,β4(x , y) ≤ B(x , y) ≤ C2Bβ1,β2,β3,β4(x , y) , x , y ∈ Rd

+ ,

where Bβ1,β2,β3,β4(x , y) is defined to be

(xd ∧ yd

|x − y |
∧ 1

)β1
(xd ∨ yd

|x − y |
∧ 1

)β2
[
log

(
1 +

(xd ∨ yd ) ∧ |x − y |
xd ∧ yd ∧ |x − y |

)]β3

×

×
[
log

(
1 +

|x − y |
(xd ∨ yd ) ∧ |x − y |

)]β4

.

(A4) For all x , y ∈ Rd
+ and a > 0, B(ax ,ay) = B(x , y). In case d ≥ 2,

for all x , y ∈ Rd
+ and z̃ ∈ Rd−1, B(x + (z̃,0), y + (z̃,0)) = B(x , y).

Define

J(x , y) = |x − y |−d−αB(x , y), x , y ∈ Rd
+ × Rd

+.



Introduction and overview Setup Main Results

Let ed = (0̃,1). To every parameter p ∈ ((α− 1)+, α+ β1), we
associate a constant C(p) = C(α,p,B) ∈ (0,∞) defined as

C(p) =∫
Rd−1

1
(|ũ|2 + 1)(d+α)/2

∫ 1

0

(sp − 1)(1 − sα−p−1)

(1 − s)1+α
B
(
(1 − s)ũ,1), sed

)
dsdũ ,

In case d = 1, C(p) is defined as

C(p) =
∫ 1

0

(sp − 1)(1 − sα−p−1)

(1 − s)1+α
B
(
1, s

)
ds.

Note that limp↓(α−1)+ C(p) = 0, limp↑α+β1 C(p) = ∞ and that the
function p 7→ C(p) is strictly increasing.
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Let κ(x) = κx−α
d on Rd

+.

Define

Eκ(u, v) :=
1
2

∫
Rd

+

∫
Rd

+

(u(x)− u(y))(v(x)− v(y))J(x , y)dy dx

+

∫
Rd

+

u(x)v(x)κ(x)dx .

Let Fκ be the closure of C∞
c (Rd

+) under Eκ
1 (u,u) = Eκ(u,u) + (u,u).

Then (Eκ,Fκ) is a Dirichlet form, degenerate at the boundary due to
(A3).

Let ((Yκ
t )t≥0, (Px)x∈Rd

+
) be the associated Hunt process with lifetime

ζκ. We add a cemetery point ∂ to the state space Rd
+ and define

Yκ
t = ∂ for t ≥ ζκ.
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The generator of the process Yκ is

LBf (x) = p.v.
∫
Rd

+

(f (y)− f (x))J(x , y)dy − κx−α
d f (x), x ∈ Rd

+.

Let p ∈ ((α− 1)+, α+ β1) be such that κ = C(p). If gp(x) = xp
d , then

LBgp ≡ 0. Hence the operator LB annihilates the p-th power of the
distance to the boundary.
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For d ≥ 2 and w̃ ∈ Rd−1, we define Dw̃ (a,b) to be the box
{x = (x̃ , xd ) ∈ Rd

+ : |x̃ − w̃ | < a, xd < b}. When d = 1, we will use
Dw̃ (a,b) to stand for the open interval (0,b) = {y ∈ R+ : 0 < y < b}.

Theorem 1(Boundary Harnack principle) [KSV1, KSV2]

Suppose p ∈ ((α− 1)+, α+ (β1 ∧ β2)). Then there exists C ≥ 1 such
that for all r > 0, w̃ ∈ Rd−1, and any non-negative function f in Rd

+

which is harmonic in Dw̃ (2r ,2r) with respect to Yκ and vanishes
continuously on B((w̃ ,0),2r) ∩ ∂Rd

+, we have

f (x)
xp

d
≤ C3

f (y)
yp

d
, x , y ∈ Dw̃ (r/2, r/2).

Theorem 2 [KSV1, KSV2]

If d ≥ 2 and α+ β2 ≤ p < α+ β1, then the boundary Harnack
principle is not valid for Yκ.
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Theorem 3 [KSV2]

Suppose d > (α+ β1 + β2) ∧ 2 and p ∈ ((α− 1)+, α+ β1). Let Gκ be
the Green function of Yκ. (1) If p ∈ ((α− 1)+, α+ 1

2 [β1 + (β1 ∧ β2)]),

then on Rd
+ × Rd

+,

Gκ(x , y) ≍ 1
|x − y |d−α

(
xd

|x − y |
∧ 1

)p ( yd

|x − y |
∧ 1

)p

. (1)
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Theorem 3 (cont) [KSV2]

(2) If p = α+ β1+β2
2 , then on Rd

+ × Rd
+,

Gκ(x , y) ≍ 1
|x − y |d−α

(
xd

|x − y |
∧ 1

)p ( yd

|x − y |
∧ 1

)p

×

×
(
log

(
1 +

|x − y |
(xd ∨ yd ) ∧ |x − y |

))β4+1

.

(3) If p ∈ (α+ β1+β2
2 , α+ β1), then on Rd

+ × Rd
+,

Gκ(x , y) ≍ 1
|x − y |d−α

(
xd ∧ yd

|x − y |
∧ 1

)p (xd ∨ yd

|x − y |
∧ 1

)2α−p+β1+β2

×

×
(
log

(
1 +

|x − y |
(xd ∨ yd ) ∧ |x − y |

))β4

.
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In proving the three results above, the strict positivity of the killing
function was used in a crucial way in several places.

What happens if the killing function is identically zero?

In [KSV3], we studied this case. For the next two results, we assume
the killing function is identically zero. It is easy to show that when
α ∈ (0,1], the process Y 0 will not approach ∂Rd

+ at the end of its
lifetime, so there is no “boundary theory”. So in this section, we also
assume α ∈ (1,2).
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Theorem 4 (Boundary Harnack principle), KSV3

There exists C ≥ 1 such that for all r > 0, w̃ ∈ Rd−1, and any
non-negative function f in Rd

+ which is harmonic in Dw̃ (2r ,2r) with
respect to Y 0 and vanishes continuously on B((w̃ ,0),2r) ∩ ∂Rd

+, we
have

f (x)
xα−1

d

≤ C
f (y)
yα−1

d

, x , y ∈ Dw̃ (r/2, r/2).

Theorem 5 [KSV3]

Then there exists C > 1 such that for all x , y ∈ Rd
+,

C−1
(

xd

|x − y |
∧ 1

)α−1 ( yd

|x − y |
∧ 1

)α−1 1
|x − y |d−α

≤ G0(x , y)

≤ C
(

xd

|x − y |
∧ 1

)α−1 ( yd

|x − y |
∧ 1

)α−1 1
|x − y |d−α

.
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Note that when κ = 0 (no killing), regardless of the blow-up rate of the
function B, the decay rate of harmonic functions is given by p = α− 1.

This should be compared with the BHP in (Bogdan-Burdzy-Chen,
PTRF 127 (2003)) where they proved that the decay rate is α− 1
when B is a positive constant.



Introduction and overview Setup Main Results

Note that when κ = 0 (no killing), regardless of the blow-up rate of the
function B, the decay rate of harmonic functions is given by p = α− 1.

This should be compared with the BHP in (Bogdan-Burdzy-Chen,
PTRF 127 (2003)) where they proved that the decay rate is α− 1
when B is a positive constant.



Introduction and overview Setup Main Results

[KSV1], [KSV2] and [KSV3] deal with the elliptic theory. Can we
establish the corresponding parabolic theory? That is, can we prove
sharp two-sided heat kernel estimates? This is the topic of [CKSV].

In [CKSV], we can actually also get heat kernel estimates for the
corresponding reflected process. We state the result for the reflected
case first.
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Define

E0(u, v) =
1
2

∫
Rd

+

∫
Rd

+

(u(x)− u(y))(v(x)− v(y))J(x , y)dy dx .

Let F be the closure of C∞
c (Rd

+) under E0
1 . Then (E0,F) is a regular

Dirichlet form on L2(Rd
+). We denote the associated Hunt process by

Y (reflected process)

The first main result of [CKSV] is the following
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Theorem 1

Suppose that (A1), (A3) and (A4) hold. Then the process Y can be
refined to be a conservative Feller process with strong Feller property
starting from every point in Rd

+ and has a jointly continuous heat

kernel p̄ : (0,∞)× Rd
+ × Rd

+ → (0,∞). Moreover, the heat kernel p̄
has the following estimates: (a) When d = 1, for all
(t , x , y) ∈ (0,∞)× Rd

+ × Rd
+,

p̄(t , x , y) ≍ t−d/α ∧
(

tJ(x + t1/αed , y + t1/αed )

)
.

(b) (i) When d ≥ 2 and β2 < α+ β1, for all
(t , x , y) ∈ (0,∞)× Rd

+ × Rd
+,

p̄(t , x , y) ≍
(

t−d/α ∧ tBβ1,β2,β3,β4(x + t1/αed , y + t1/αed )

|x − y |d+α

)
≍

(
t−d/α ∧ t

|x − y |d+α

)
Bβ1,β2,β3,β4(x + t1/αed , y + t1/αed ).

(2)
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Theorem 1 (Cont)

(b) (ii) If β2 > α+ β1, then for all (t , x , y) ∈ (0,∞)× Rd
+ × Rd

+,

p̄(t , x , y) ≍
(

t−d/α ∧ t
|x − y |d+α

)[
Bβ1,β2,β3,β4(x + t1/αed , y + t1/αed )

+

(
1 ∧ t

|x − y |α

)
Bβ1,β1,0,β3(x + t1/αed , y + t1/αed )

× logβ3

(
e+

|x − y |
((xd ∧ yd ) + t1/α) ∧ |x − y |

)]
. (3)
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Theorem 1 (Cont)

(b) (iii) When β2 = α+ β1, then for all (t , x , y) ∈ (0,∞)× Rd
+ × Rd

+,

p̄(t , x , y) ≍
(

t−d/α ∧ t
|x − y |d+α

)[
Bβ1,β2,β3,β4(x + t1/αed , y + t1/αed )

+

(
1 ∧ t

|x − y |α

)
Bβ1,β1,0,β3+β4+1(x + t1/αed , y + t1/αed )

× logβ3

(
e+

|x − y |
((xd ∧ yd ) + t1/α) ∧ |x − y |

)]
. (4)
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Now we state sharp two-sided heat kernel estimates for Y . Fix
κ ∈ [0,∞). That is, we are dealing with the case either with or without
critical killing.

Theorem 2 [CKSV]

Suppose that (A1)–(A4) and q ∈ [(α− 1)+, α+ β1). Then the process
Yκ can be refined to start from every point in Rd

+ and has a jointly
continuous heat kernel pκ : (0,∞)× Rd

+ × Rd
+ → (0,∞). Moreover,

the following approximate factorization holds for all
(t , x , y) ∈ (0,∞)× Rd

+ × Rd
+:

pκ(t , x , y) ≍
(

1 ∧ xd

t1/α

)q (
1 ∧ yd

t1/α

)q
p̄(t , x , y)

≍ Px(ζ
κ > t)Py (ζ

κ > t) p̄(t , x , y), (5)

where p̄(t , x , y) is the heat kernel of Y .
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Integrating our heat kernel estimates, we can get

Theorem 3
Suppose that (A1), (A3) and (A4) hold. If d > α, then

Ḡ(x , y) ≍ 1
|x − y |d−α

, x , y ∈ Rd
+. (6)

If d ≤ α, then Ḡ(x , y) = ∞ for all x , y ∈ Rd
+.

Define Hq(x , y by

1 if q < α+ 1
2 (β1 + β2),

logβ4+1
(

e +
|x − y |

(xd ∨ yd ) ∧ |x − y |

)
if q = α+ 1

2 (β1 + β2),(
xd ∨ yd

|x − y |
∧ 1

)2α+β1+β2−2q

logβ4

(
e +

|x − y |
(xd ∨ yd ) ∧ |x − y |

)
if q > α+ 1

2 (β1 + β2).
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Theorem 4
Suppose that (A1)–(A4) and q ∈ [(α− 1)+, α+ β1). When α ≤ 1,
suppose also that q > 0 (or, equivalently, κ > 0). Then Gκ has the
following estimates:
(i) If d ≥ 2, then for all x , y ∈ Rd

+,

Gκ(x , y) ≍
Hqκ

(x , y)
|x − y |d−α

(
xd ∧ yd

|x − y |
∧ 1

)q (xd ∨ yd

|x − y |
∧ 1

)q

.

(ii) If d = 1, then for all x , y ∈ Rd
+,

Gκ(x , y) ≍



1
|x − y |1−α

(
x ∧ y
|x − y |

∧ 1
)q

if α < 1,(
x ∧ y
|x − y |

∧ 1
)q

log

(
e +

(x ∧ y) ∨ |x − y |
|x − y |

)
if α = 1,

(x ∧ y)α−1
(

x ∧ y
|x − y |

∧ 1
)q−α+1

if α > 1.
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Thank you!
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